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Uniqueness and Clustering Properties of Gibbs States
for Classical and Quantum Unbounded Spin Systems
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We consider quantum unbounded spin systems (lattice boson systems) in
v-dimensional lattice space Z". Under appropriate conditions on the interactions
we prove that in a region of high temperatures the Gibbs state is unique, is
translationally invariant, and has clustering properties. The main methods we
use are the Wiener integral representation, the cluster expansions for zero
boundary conditions and for general Gibbs state, and explicitly S-dependent
probability estimates. For one-dimensional systems we show the uniqueness of
Gibbs states for any value of temperature by using the method of perturbed
states. We also consider classical unbounded spin systems. We derive necessary
estimates so that all of the results for the quantum systems hold for the classical
systems by straightforward applications of the methods used in the quantum
case.

KEY WORDS: Quantum unbounded spin systems; Wiener integral; Gibbs
states; cluster expansion; clustering property; probability estimates.

1. INTRODUCTION

We continue our study of quantum unbounded spin systems (lattice boson
systems) initiated in ref 26. The model we consider can be viewed as a
model for the quantum crystals’® and is closely related to lattice field
theory with continuous time.'!’ In ref. 26 we gave a characterization of the
Gibbs states in terms of conditional reduced density matrices and
investigated the structure of the space of Gibbs states such as existence,
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convexity, and compactness of the space (see Section 2.1). In order to
understand the phase transition phenomena, it may be necessary to show
the uniqueness of the Gibbs states in a region of high temperatures, and
then the nonuniqueness of the states at low temperatures.!27 In this
paper we prove the uniqueness and the clustering properties of the Gibbs
states in a region of high temperatures under appropriate conditions on
interactions (two-body interactions). In the case of one-dimensional systems
the uniqueness holds for any value of temperature. See Section 2.2 for the
details. The methods for the quantum systems can be applied straight-
forwardly to the classical systems to show that all of the results for the
quantum systems also hold for the classical systems. We plan to investigate
the detailed structure of the phase diagram in the near future.

The main methods we use are the Wiener integral representation!3%
and cluster expansions for zero boundary conditions and for general Gibbs
states.®® For classical systems a cluster expansion has been developed in
terms of polymer systems!'”’ and the analyticities and the clustering proper-
ties of correlation functions have been established. For quantum systems
one of us gave a sketch of a cluster expansion for zero boundary condi-
tions.'> However, the uniqueness of Gibbs states for classical as well as
quantum systems remains open. See Conjecture 4.1 of ref. 26. In this paper
we develop a cluster expansion method for quantum systems by using the
Wiener integral representation and modifying the cluster expansion method
developed in refs. 23 and 25 to show the uniqueness of Gibbs states in a
region of high temperatures. In ref. 22 one-dimensional systems are studied
by means of a cluster expansion of polymer types and an infinite-volume
limiting Gibbs state which is translationally invariant and ergodic is
constructed. By using a method of perturbed states‘>'> we prove that the
state constructed in ref. 22 is the unique Gibbs state for one-dimensional
systems.

Let us describe the main mthods in this paper briefly. As in ref. 26,
we use the Wiener integral representation./!*3% For >0, let S? be the
space of continuous loops from [0, 8] to RY ie, $f={s:[0, ] - R%
5(0)=s(B)}. We give an a priori measure 1; by Ay(ds)=dx PF(dw),
s=x+w, where dx is the Lebesgue measure on R? and P#(dw) is the
conditional Wiener measure.®® For a finite set 4 < Z* we use the following
notation:

xp={x;:ied}, dx,=]]dx,
ieA
(1.1)

sa={s;:s,€80 ied}, Ayds,)=T] Axds))

ieA
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and Q4 = (S%)1. Put Qf = (S#)%. We consider the following type of inter-
action (two-body interactions):

Wixa)= Y Px)+ ¥ Ulx,x;li—jl) (12)

ied {ij}ca

where P and U are the self-interaction and the two-body interaction,
respectively, which satisfy specific conditions (Assumption 2.2.1). Put

Wix ,x)= Y Ulx,x;li—jl) (1.3)
IE{/;jEAt
We write
Vi(s,)= j (s 4(x)) dt (14)

and Wy(s,, s,) analogously. For 4 =Z' we denote by %, the local
o-algebra on 2° and put & = £,,. See Section 2 for the details.

For finite 4 < Z”, let v’; be the local Gibbs measure on £4 with zero
boundary conditions and let v,, be a Gibbs measure on Q”. See Sectlon 2.1
for the definitions. In Section 3 we develop the cluster expansions of the
following types: For any dcA<Z” and any %,-measurable bounded
function f

V)= Y K4, X f)gasduX) (15)
ps=XcA
and
ve(f)= Z K4, X, () g4 X)+ R, 4(f) (1.6)
psxca
We then show that
lim R, 4(f)=
A—=Z

By using the method of Kirkwood-Salsburg type integral equations®® we
prove that for any X< Z*

Ali_{l‘lz“ gA,p(X) = gp(X)
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Thus we conclude that for any Gibbs state v,
vl /)= tim V(7

and so the uniqueness of Gibbs measures follows from the above. This
result and the definition of Gibbs states (Definition 2.1.4) imply the unique-
ness of Gibbs states. The cluster properties of the unique Gibbs state
follow from a consequence of the convergence of the cluster expansion (see
Section 6.3).

For one-dimensional systems we use the method of perturbed
states.>'>?) Let v, be a fixed extremal Gibbs measure which is trans-
lationally invariant. For any interval A=[—n,n] it turns out that
exp[ Wy(s,, 54)] is an element in L*(Q¥, dv,). By the equilibrium condi-
tions we have that for any %,-measurable bounded function f

WOUS) = [ v(ds) f(5) expL Wy(s.1, 5.4/ N 15

where N, g is the normalization factor. By taking n— oo and using the
extremality of v, we show that for any >0

ve(f)= lin':o V(/?,,),p(f)
where A,=[ —n,n]. This implies the uniqueness. See Section 7 for the
details.

In order to obtain the results in Section 2.2 for classical systems, one
only needs to replace

SP dglds), QF, V, W,
by
RY dx, Q=(RH%, BV, BW

respectively. Then straightforward applications of the methods used for
quantum systems give the results for classical systems. We supply the
necessary estimates for classical systems in Section 4.2.

We organize the paper as follows: In Section 2.1 we introduce nota-
tions, definitions, and necessary preliminaries. In Section 2.2 we give basic
assumptions on interactions and then list the main results in this paper. We
develop a cluster expansion for zero boundary conditions in Section 3.1
and then derive a cluster expansion for general Gibbs measures in
Section 3.2 by using the equilibrium conditions. Section 4 is devoted to
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a priori estimates. We also produce basic estimates for classical systems in
Section 4.2. In Section 5 we prove the convergence of the cluster expansion
for zero boundary conditions by using the basic estimates. In Section 6
we prove uniqueness and clustering properties in a region of high tem-
peratures. The main tool is the method of Kirkwood-Salsburg type integral
equations.®® The proof of the uniqueness of Gibbs states for one-dimen-
sional systems for any values of > 0 is given in Section 7. In the Appendix
we produce the proofs of explicitly f-dependent probability estimates
(Propositions 4.1.3 and 4.2.3).

2. PRELIMINARIES AND MAIN RESULTS

2.1. Preliminaries

We consider quantum unbounded spin systems (lattice boson systems)
on the v-dimensional lattice space Z*. We collect notations, definitions, and
some results from ref. 26 which will be used in the sequel. By ¥ we mean
the class of finite subsets of Z". At each site i€ Z” we associate an identical
copy of the Hilbert space L*(R? dx), where dx is the Lebesgue measure on
R? For x=(x',.., x‘)eR? and i=(i,,.., I,) € Z" we write

d 172
=] £ 7| = max 1 (1)
1=1

<l<v

For any bounded region 4 = Z* we write
x,={x;:ie A}, dx =[] dx; (2.2)
ied
The (local} Hilbert space for lattice boson systems in 4 €% is given by

H4=® Lz(Rd, dx;)

ied

= L¥(RY)*, dx ) (2.3)

and a (local) Hamiltonian operator on $ , is given by

H,= _% 2 A+ V(x,)
ied (2.4)

Vix,)= Z D 4(x,)

dcA

822/80/1-2-15
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where 4, is the Laplacian operator for the variable x;€R“ and for each
d<Z’ and @, is the interaction potential, which is a measurable real-
valued function on (R%)4.

As in ref. 26, we impose the following conditions on the potential &

Assumption 2.1.1. The potential & =(P,),_, satisfies the
following conditions:

(a) @, is a Borel measurable function on (R9)4.

(b) &, is invariant under translations on Z".

(c) (Superstability) There are 4 >0 and ¢ R such that
Vixq)= Z D (x, )2 Z (Ax.?—c)

dcA ied
(d) (Strong regularity) There exists a decreasing positive function ¥
on the natural integers such that

P(r)<Kr=*~° forsome Kande>O0with ) ¥(|i|)<4

ieZ"
Furthermore if 4, and A, are disjoint finite subsets of Z* and if one writes
V(XAl qu) = V(xm) + V(XAI) + W(XA,, xAz)

then the bound

IW(xa,x )< Y Y Bi—jl) 3(x7+x3)

ieAdy jeAy
holds.

For a bounded domain A4 = Z”, the C*-algebra of local observables is
defined by

Ay=2(H4) (2.5)

where £(9,) is the algebra of all bounded operators on $,. If
And,=, then U, =, U4, and A, is isomorphic to the
C*-algebra A, ®1,,, where 1,, denotes the identity operator on § 4,. In
this way we identity U, as a subalgebra of A ,. if 4 < A’. The quasilocal
algebra of local observables is given by

91=< U 91A>_ (2.6)

Ae€
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where the bar means the completion with respect to the uniform norm.
Notice that 2 is a unital C*-algebra.

We next describe the Wiener integral formalism of lattice boson
systems.*!*2633) For x, yeR? and >0 let us denote by W% | the set of
continuous paths w: [0, 8] = R? with w(0)=x, w(B) = y. The set /44 y
endowed with the standard Borel space structure. For §> 0 denote by P

the conditional Wiener measure on W, ,,%"

For finite A€ Z", x,, y,€(R9), and >0, we use the notation

B - B B = s
W\'A YA N x W-\'i»)’i and PXA ya x Px: Yi
ieAdA ie

eA

We identify the space W% _, xeR“ with a single space W#= W}, by
means of the mapping @ < w + x. The measures P? and P#= P{,’O are

X, X

transformed thereby into each other. Furthermore, we use the map

WE e Wh, glven by w—w+Lf , where Lf , is the linear function
L” (t)—x+ﬂ 'f(y — x). The measure P# -y is transformed thereby into
exp[—(l/Zﬂ) |x — y|?] P?. The product space W?# is transformed into

X4,VA

(W% ;)" analogously in which the function L2,  (1)=x,+ 87" —x,)
is used. We shall use the notation
SP=R4xWF and s=(x,w)eS* (2.7)
as well as
SP=RIxRYx W’ and $§=(x,y,w)eS’ (2.8)

where s(1)=x + w(?) and §(t) = w(1) + L (1), respectively. The set S has
a o-algebra generated by the products of Borel sets in R? and cylinder sets
in W#=w£, .%® We give an a priori measure A; on S* by

Ag(ds)=dx PP(dw),  s=(x,w)eS’

Aglds 1) =[] Ap(ds))

ieA

(2.9)

We use the notations

QF = (SP)% = (R x WHZ (2.10)
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and
OF = ($5)% = (RYx R x WF)Z' (2.11)

For each ieZ', let P;: Qf - SP be the projection P,(s)=s,, the value
(path) on the ith site. For each 4 = Z*, we have a local g-algebra %, which
is the minimal o-algebra for which P,, ie A, are measurable. We simply
write & for %,,. We write 2(Q*, #) for the family of probability measures
on Q4.

We write that for 4 =Z" and se Q*

B
Daplsa)= | @utsaln) dt

Va(sa)= Y, Palss) (2.12)

dc A

W/f(sm $qc) = Z D 4(5,4)

ANA# D AdnA %D

Denote

Y
= sna, ez’
1]

6N={seQ:V1, y sf<N2(21+1)"} (2.13)
i) </
S= ) Sy
NeN

We say that a measure u on (2%, &) is tempered if it has its support on
&.%Y A Borel probability measure u on (27, ) is said to be regular if
there exist 4>0 and J so that the projection u(ds,) of u on any (27, Z,)
satisfies

g(s, | pn)<exp [ — Z (Asf—é)} (2.14)
ieAd

where g(s, | #) is such that u(ds,)= g(s, | u) Ag(ds,). It is easy to check
that any regular measure is tempered.®"

Before listing the main results in ref. 26, it may be worthwhile to give
a brief discussion on the main idea used to characterize the Gibbs states.2®
For A€ ¥, let H , be the local Hamiltonian given by (2.4). By the Feynman—
Kac formula the operator exp(—fH ,) has its integral kernel?6-33

eI 1, y,0) = | Pr, (s 4) exDL V(s )]
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and so the finite-volume partition function for the local Hamiltonian H
and the inverse temperature f is given by

Z5 p="Trg [exp(—BH ;)]

= j Ag(ds 4) exp[ — Vy(s,4)]

Similarly the local Gibbs states can be expressed by integrations on the
path space ($¥)". Employing standard methods in classical statistical
mechanics,'>'%2®) we were able to introduce a family of conditional
measures (specifications) and Gibbs measures on 7. See (2.16) and
Definition 2.1.2 stated below. The Gibbs states have been defined by the
conditional reduced density matrices (2.18) and Gibbs measures. For the
details we refer the reader to ref. 26. See also the discussion below.

Finally we collect definitions and basic results from ref 26. The
partition function in 4 €% for the interaction @ with boundary condition
§e S is given by

Z% 45) = [ A(ds ) expL = V(s.) = Wyls 1> 5.0)] (2.15)

Notice that Z9$, corresponds to the partition function with the zero
boundary condition, ie., Z§,=Z% ,0). The Gibbs specification y®=
(%) ;. With respect to & is defined by!!%26:2%

Z5(5) ™ [ Lalds 1) expl = V(5.0 = Wls.40 540)]

X1 4(5, §4) if 56
0 if §¢6

yo(d | 5) = (2.16)

where 4e€ # and 1, is the indicator function on A4, and s 4§, is the con-
figuration defined by s, on 4 and §,- on A°, respectively. It can be checked
that the Gibbs specification satisfies the consistency condition!'?: For
dc A, 5e8,

YISl 9 =] yids 195415
=y%(419) (217)

The Gibbs measure on (27, %) is defined as follows‘!>26;
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Definition 2.1.2. A Gibbs measure u for the potential @ is a Borel
probability measure on (Q”, #) satisfying the equilibrium condition

wA) = [p(ds)y2419), AeF

We denote by ¢%(2#) the family of all Gibbs measures on (2”, %) for the
interaction potential @.

We then have the following result:

Theorem 2.1.3 (Ref 26, Theorem 2.7). Under Assumption 2.1.1
any Gibbs measure ve %%(2°) is regular. Furthermore, 4%(Q*) is non-
empty, convex, compact in the local convergence topology, and a Choquet
simplex.

Let us now consider Gibbs (equilibrium) states on the quasilocal
algebra A. For 4e¥ and a configuration §€ S, we define a function
kx4 y4:8) X4, ya€(RY)4, which takes the role of the conditional
reduced density matrix*7";

kx4, y4:8)= ZA,ﬂ(E)_l J P,e,,,).A(dSA) expl — Vp(s4) — Wp(s 4, §4)]
(2.18)

With the help of these functions and the Gibbs measures we define the
Gibbs (equilibrium) states as follows.*®

Definition 2.1.4. A state p on the quasilocal algebra 2 is called a
Gibbs state if there exists a Gibbs measure v e 2®(Q#) such that the restric-
tion p, of p to A, is given by

PAA)=Try (KPA), Ae¥,

where the density matrix K’ is defined by its integral kernel

K(Av)(xm Ya)= I v(d5) k 4(x 4, ¥ 45 5)

We denote by {4;’(?1) the family of Gibbs states for @ on U at inverse
temperature > 0.

Theorem 2.1.5 (Ref. 26, Theorem 2.9). Under Assumption 2.1.1,
@f(ﬁl) is nonempty, convex, and also weak*-compact if the interaction is
of finite range.
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2.2. Main Results

As stated in the Introduction, the purpose of this paper is to prove the
uniqueness and the cluster properties of Gibbs states in a region of high
temperature (sufficiently small f>0). In order to avoid unnecessary
complications, we make the following assumptions on the interaction
potentials.

Assumption 2.2.1. The potential @ = (D,),_,. satisfies the
following conditions:

(a) There exist Borel functions P and U on R? and RYx RY x N such
that

¢{i}(xi)=P(xi)7 ¢(i,j)(xis xj)= U(x;, X5 li—Jl1)
D,(x,)=0 if |4]>2
(b) There exist y>2, D,>0, D,>0, and D;>0 such that the
inequalities
Dy(|x|”= D) S P(x) < Dy(|x|"+1), xeR’
hold.

(c) There exists a decreasing positive function ¥ on the natural
numbers such that

Y(r)<Kr~'° forsome Kande>0
Furthermore, the bound
LU X —x;, DI < VU= 1) %3] - 1]
holds. Here (and hereafter) we have used the notation U(|x;—x;|)=
Remark. Assumption 2.2.1(c) implies that for any 4 = Z* the bound

Y Ulxi—x | <d Y Ixl? (2.19)

{ijlea ied

holds for some J>0. Thus from Assumption 2.2.1(a)-(b) and the above
bound one has that

Vix)2 Y [4'|x]"=4"] (2.20)
ied
for some positive constants 4'>0 and ' >0, and so all conditions in
Assumption 2.1.1 are satisfied.
The following are the main results in this paper:
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Theorem 2.2.2 (Uniqueness of Gibbs states). Under Assumption
2.2.1 there exists f,>0 such that for any f with 0 <f<f, the Gibbs
measure on (Q%, %) is unique, ie., card(4®(2%))=1. Consequently the
Gibbs state on 2 is unique.

Theorem 2.2.3 (Cluster property). Under Assumption 2.2.1, let
peg}’(ﬂl) be the unique Gibbs state for f<f,. Then for any 4eU,,,
BeU ,.

[p(AB) —p(A4) p(B)| = 0 as dist(4, 4') >

where dist(4, A’)=inf{|i—j|:ie 4, je A'}.

We next consider the quantum unbounded spin systems in the
one-dimensional lattice space Z. Let ¥ be the function on N given in
Assumption 2.2.1(c).

Theorem 2.2.4. Assume that [¥(r)]'*<Kr~'~¢ for some con-
stants K> 0 and £>0. Then for any f>0 there exists a unique transla-
tionally invariant Gibbs state.

The rest of the paper is devoted to the proof of Theorem 2.2.2-2.24.

3. CLUSTER EXPANSIONS

3.1. Cluster Expansion for Zero Boundary Conditions

We develop a cluster expansion for zero boundary conditions in this
subsection. A cluster expansion for general Gibbs states will be developed
in the following subsection. The methods we use are closely related to those
in refs. 23 and 25. Using the notation U(|x; —x;|) = U(x;, x;; |i — j|) again,
we write that for Ae®

B
Pys)=[ Pls(@)dr,  Pys)= T Pyls)
B
Uplsi—s, =] Ulls,(2)—s,(0)]) d,
o (3.1)

Uﬂ(sA) = Z Up(lsi—sjn

{ihj}ec4a

Va(sa)=Pyls4)+ Upgls,)
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For A€¥, let B(QF, #,) be the family of bounded functions depending
only on the configurations s , € (S#)*. The local Gibbs measure on (27, #,)
with zero boundary conditions is given by

YOUL) = [ £l5.4) vtds )
=Z 3} [ 24(ds.) expl — V(.01 f(5.4) (32)

Z.4p= | Aplds i) expl — V(s )]

For 4c Ae% and fe(Q*, #,) the above can be expressed as

VOUN =233 [ dds) flsd exp | ~Vils)= T P

ie A\4

xexp[— Y Uglsi—s)— Y Up(s,-—sj)] (3.3)

ie j.'}"’e};l\d :5:.:1/1}\4

Denote by b= {i,j} any two-point set in Z’, which is called a bond in Z".
Let B(A) be the family of bonds in A:

B(A)={b:b={ij} =4} (3.4)
For given be #(A) we write
Uplsy) = Uglls; = s;), b={ij} (3.5)
hg(sp) =exp[ — Uglsp)] =1 (3.6)
Using the above notation, we may write
|~ T Uhls—sh- T Uls—s))]

iLJ}: ij}:
iej.je}A\A i.j{E \d4

=exp{— y Uﬁ(sb)} (3.7)
beR(A):
b¢R(4)
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For given finite family 4 of bonds (a family of two-point sets) one has the
following decoupling identities:

exp [ _y U,;(s,,)] = T Chylsn)+11
bed bed
= YT sy (3.8)

pcBB bed

where the term corresponding to & = (J is defined to be 1. For X« Z” and
i¢ X it follows that

exp[ -2 Uﬁ(lsi_sjn] =exp[— ) Ul"(sb)]

jeXx be®(Xu{i})
ieh

DERBBXU{i}) beR
be®B=ich

For b={i,j} we write hy(s,) = hgl(s;, s;). Then from the above one has the
following recoupling identities:

Y I1 h,;(s,.,sj)=exp[—z Ugls;—s;1) | =1 (3.9)

TEYcX jeY . j#i jeXx

Using the decoupling identities (3.8), we obtain that

exp[ - U,,(sb)] = ¥ IT Asss) (3.10)

DBERBR=R(AY. beR
b¢B(A) beRB=b¢ B(A)

A family 4 ={X,, X,,.., X,,} of subsets of Z” is said to be connected
if for any X;, X;e % there exists {X,,.., X;} =% such that X; n X, #J

G+
(j=1,.,1—1),and X,n X, # J and X;n X, # . In the expression (3.10)
we decompose £ into the disjoint union of connected families (of bonds):

B=BUB0 - URB,,
BBi=F(i#]) and each 4, is connected

For given dc< A there exist {>0) components which we may assume
B, B,,..., B, such that B, U {4} is connected for i=1,..., [ For the sake of
brevity we employ the following terminology: For 4= A and families
B, B,,..., B, of bonds we say that

“P({B,.... Bi}; 4, A) holds” if B, B(A) (i=1,..., ), B, B;= & (i=]),

#B;u {4} isconnected (i=1,..,1),and be B, = b ¢ B(4) (3.11)
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Let {#,,... #;} be the maximal family for which P({%,,..., #,}; 4, 4) holds.
Resumming over #'=)]_,,, %;, and using (3.8) and (3.10), we obtain

exp [ — Y Up(sb)]

beR(A).b¢g B(A)

= % ) I1 hy(ss)

S{®,..B): # < @A) bed LUl )
P({ﬂ] ..... .@[} 4,4Yholds 2 r\(U( (B =2

(T I T e)

(B, B i=1 bed
X €Xp [ — Y U/,(s,,)] (3.12)
be @ADL (U B)

Again, for the sake of typographic convenience we use the following
terminology: for a given family {b,,.., b,} of bonds and subsets 4, X< Z”
we say that

“P({by,., b,}; 4, X) holds” if | J b, =X, b,¢ B(4) (i=1,.., n),
i=1

and if {b,,..., b,} U {4} is connected (3.13)

Then it is easy to check that

Z = Z Z e (3.14)

..... By} : g Xcda: ({b ,.‘.,b,,’) < B(X):
P({aa, ..... sv,} 4,4) holds ANX# D (X£D) P({b1..bs);4,X) holds
X\d# G (X # D)
For given 4, Xe ¥, define
n
K,e(A, X, SAUX)={ Z H hﬁ(sbi)}
blrnbn} C B(X): =1

xexp[—Vﬂ(sd)— Z P/}(si)]

ie X\d4

for X\d#& (3.15a)

R4, X;5,)=exp[ — Vi(s,)] for X\d=@&  (3.15b)
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and for f e B(Q*, #,) define
RAd, X ) = [ Ap(ds 1) f15.) Ry X 5.4, ) (3.16)

We now use (3.3), (3.7), (3.12), and (3.14)—(3.16) (in that order) to obtain

VA
Vi) = > Ry(4, X, f) [—E”%"“"' ] (3.17)
FsXcA: A.p
AdnX+# (X =)
X\d# S (X )
We write
Z},°) = f Ag(ds) exp[ — Pyl(s)]
=Tr(exp[ —B(— 14+ P)]) (3.18)
For Ac AcZ’ and feB(Q%, #,), put
K4, X, SAUX)E(Z::;O))_MU'“ R(4, X; 5,4 %) (3.19a)

Ko(d, X f)= [ Aylds ) f(5.4) Kpd, Xisar)  (3.19b)

Z,4=(ZM)MZ,, (3.19¢)
ZA\X

gaplX)==XL (3.19d)
ZA‘B

Then (3.17) and (3.19) imply that for 4 < X< A and fe B(Q*, £,)

VR Sf) = ) K4, X, f) 84.5(4 0 X) (3.20)

FeXxc
Xaefa #Q)
\ = (X#* )

The above is the cluster expansion for zero boundary conditions.

Remark. Contrary to the cluster expansions in refs. 23 and 25, we
did not expand the factor exp[ —Uy(s,)] in the above expansion. See
(3.7) and (3.12). This will simplify the proof of the convergence of the
expansion.
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3.2. A Cluster Expansion for General Gibbs Measures

For given Gibbs measure v, ¢ %(Q”) we use the equilibrium conditions
in Definition 2.1.2 to write that for any 4= 4 €% and fe B(2F, Z,

vl ) = [ vitds) f(s)

= [ va(as) {Z,,,,,(s-)—‘ [ Aa(ds 1) £(5.4) expL = Vls.) = Wils.i s‘m)]}

(3.21)
In order to develop a cluster expansion we write

exp[ — Vyls,4) — Wa(s4, 54)]

=exp[—Vﬂ(sd)— ) P/,(si)—U‘L,‘)(A,A;s,,EAt)] (3.22)

ieA\d
where
UPd, A;5,84)= Y, Udsi—s)+ ) Uplsi~s)
. Ji._j): {i,j} =A\4
ied, jedA\d
+ Z Up(s;—3)) (3.23)
ie(Ai:_le}e:A‘

We remark that!!?

exp[ — Wy(s4,54)]1= A!i_l:nzv exp[ — Wyls.4, § 4na)]

for any §e ©. Following the procedure from (3.7) to (3.14) in Section 3.1 and
using a method similar to that used there one can derive the following equality:

exp[ — U4, A;5,454)]

- ¥ <<b. » [ Astsy))

Fesxe€: N\ {b,.. bp) cB(X):  j=1
ANX£D(X#D)  P({by,..bs}:4,X) holds
XNAAB(XAD)  pig BAY, i=1an

xexp[—U},Z)(A, X, A58 0\ao054)] (3.24)
where
UP(A, X, 4;5 j\(a0 305 1)

= Z Ugls;,—s) + Z Ug(s;—5)) (3.25)
{i.j}cA(4uX) ) 4\,;,'):
ieA\(du X)
je A4 uX)
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We define that for Xe#®

X)) = j v4(ds) exp [ Y. Uglsi—s;) + Wylsy, sxc)} (3.26)

{ij}ex

Using (3.8), (3.25), and the equilibrium conditions, it can be checked that
forduXca

(Z) 42 [ vy(d$) Z449) ™ [ 2505 s )

X exp [ - ¥ P,,(s,-)] exp[ —UP(4, X, 455 4, 054) ]

ie AN(4 U X)

=g4uUX) (3.27)

In (3.24) we divide the sum into two parts:

y..=Y ..+ ¥

Xe¥ XcA X: XA £ S

We first consider the contribution from X < A. If one substitutes (3.24) into
(3.22) and then (3.22) into (3.21) and uses (3.27), one may observe that the
term corresponding to XcA is exactly Ky(4, X;f)g(4u X), where
K44, X; f) has been defined in (3.19a).

Next we consider the contribution from X with X n A¢# ¢F. Observe
that for X with XnA°# &

- Vﬂ(sd) - Z Pﬂ(sl) - U([}Z)(A’ X’ A; SA\(A UX)‘STA‘)

ieA\d

= =Vy(s4)— Wp(s4,54) + U;”(A, X, A; 5,5 4) (3.28)
where
U4, X, 4; 545 4¢)

= Y Ugsi—5)+ Wy(54, S 0 4)

{ij} edn(xX\a)

+ Y Udsi—s)+ Y Uyls—s;)

ie AN (X\4) ieAnX
jeAN(X U 4) jeda

+ Y Usi-s) (3.29)
ieA\(X U 4)

jeAdn(Xvud)
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We use (3.28) and the equilibrium conditions to conclude that for any
he LN(QF, 24(ds 4, x)) and X with X~ A°#

[ vids) Z, 4(5) 7 [ Mds.g) h(saun) exp| ~Viylsa)— T Pyls)

ie A\d

x exp[ — U;,Z)(A, X, A58 nsox054)]

- j v5(ds) (5.4, x) expL UM, X, 4; 5,45.46)] (3.30)

Thus, combining the above results, we conclude that for any f e B(Q%, #,)
and Ac 4

ve(£)= Y Ky, X; ) §(A0X)+ R, 4f) (3.31)
geXca
where
RifN= 3 [ valds) fiss) ) T #14(s)
Xew (Blonbn) <BX)  j=1

AN X+ P({by.....,bn}; 4, X) holds
ANX#= S bi¢ B(AC)
xexp[ UP(4, X, A; 5,45 4)] (3.32)

Here U ‘;’ has been given in (3.29). The expression (3.31) is the cluster
expansion for general Gibbs measures.

4. BASIC ESTIMATES

In this section we collect basic estimates which will be used in the
proofs of the convergence of the ciuster expansions in Section 3. We derive
the estimates for quantum unbounded spin systems in Section 4.1. We also
derive the necessary estimates for classical unbounded spin systems in
Section 4.2 for the reader’s convenience. Throughout this section we assume
that the potential @ satisfies the conditions on Assumption 2.2.1.

4.1. Basic Estimates: Quantum Systems

Recall the definition of Z in (3.18). We use the following notation:

12
= [ (o2 | (1)

for se S”. Recall also the notations in (2.9) and (3.1).
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Let y>2 be the constant in Assumption 2.2.1(b) and let a be a fixed
positive number.

Lemma 4.1.1. For 0<f <o there exist positive constants ¢,, ¢,
and ¢, independent of f§ such that the following results hold:

(a) The bound
Z(pO) ? clﬁ—d(1/2+ 1/y)
holds.
(b) For given 4 >0 the bound

j Ag(ds) exp[ —Py(s)+ A |s|3]1 < c, 412 +1m

holds.
(c) For given 4 >0 the bound

[ 25(ds) 151 expl — Pyls) + A 5|31 < ¢, =172+ gt =202

holds.

The proof of the above lemma will be given at the end of this sub-
section. As a consequence one has the following results:

Corollary 4.1.2. For given 4 >0 there exist positive constants ¢}
and ¢}, independent of # (0 < f <) such that the bounds

(Z®)-! I Ag(ds) exp[ — Py(s) + A |s|3]1 < ¢
and
(Z§) [ gtds) Isl expl — Pyls) + 4 Isl3] < 8 =02

hold.
Proof. The corollary follows from Lemma 4.1.1. |

In the proof of the convergence of the cluster expansion (3.8) for
general Gibbs measures, we will need f-dependent probability estimates for
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Gibbs measures. Recall the function ¥ in Assumption 2.2.1(c). For given
4€%, vye 9®(2*), and constant 4 >0, put

vy(ds; A, 4) =exp [A Y PUi—JjI) 1sil g |sj|ﬂ] v(ds) (4.2)
{i,j}:ied, jea
and let pg(s4; A, 4) be the distribution of v,(ds; 4, 4) on (28, #,) with
respect to A4(ds,):
vo(dsy; A, 4)=pa(s4; A, 4) Aglds 4) 4.3)

From the equilibrium conditions in Definition 2.1.2, it follows that for any
AcAcZ

Po(s45 A 4)= [ v(d5) Z,15) ™" [ Ayldls 1a) eXPL— V(s 4) = Wil 5.4)]

xexp[A R |§,|b] (44)

{ij}:ied, jeae

where §;=s5; if je 4, and §;=35; if je A°. We also write that for dc €%
P54 A 4)=Z 3} [ Aglds 1)

xexp[—Vﬂ(sA)'i'A Z P(li—jl) |Si|ﬂ |s1'|/3:|
{i,j}:ied,jeA\d
(4.5)

We then have the following results:

Proposition 4.1.3. Under the assumptions as in Lemma 4.1.1 one
has the following results: (a) For any 4€%, 420, and vz¢ Z%(Q*), there
exist constants 4* >0 and § > 0 independent of # such that the bound

i3
s d )< TT 2 exp [ ax [ oo ae=3] |
0

ied
holds

~ (b) For any 4cAe¥ and A >0, there exist constants A>0 and
6 >0 independent of § such that the bound

_rB )
PLR(sas A, )] 22+ exp {—[A f Is:(0)I dr—é]}
0

ied

holds.

822/80/1-2-16
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The proof of the above proposition will be given in the Appendix. The
above results are stronger than the Ruelle-type probability estimates in
ref. 32.

Proof of Lemma 4.1.1. (a} For any r >0, put

Z(r)={seS?: sup |s(z)|<r} (4.6)

o<sr<p

Then one has that for >0

Z(po)> Ag(ds) exp[ — Py(s)]

(g~

p )
;cf Ag(ds) exp [ —D3'[ [s(z)’ df]
Z(p=) 0

> Ag(ds
c L(,,-w, Ads)
Denote by A(r) the largest box contained in the ball of radius r and let

Z(r)={seSP:s(r)e A(r), ¥z e [0, A1}

Then from the above it follows that

Z(O)Z AAd
d cL:(/i—‘/Y) ﬂ( *)

=cTr (exp ['g A,,(,,-w)}>
>c, f A2+ 1

where 4 4, is the Laplacian operator on L*(A(r), dx) with Dirichlet b.c.

(b) By Assumption 2.2.1(b) one obtains that the left-hand side of the
inequality is bounded by

lhs.<c j A4(ds) exp [ ~ % jﬂ Is(z)]” dr]
0

SCTr<exp[—ﬂ(—%d+%|x|”)])

< c(2np)~ L« dx exp <—% 8D, |x|">

—d(1/2+ 1)y
Sczﬁ (1/ /r)
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Here we have used the Golden-Thompson inequality®® to get the third

inequality.
(c) By the Hoélder inequality one has that

B B 2y
Ist3 =" Is(o)l? de < 1= [J Is()|” dr] (47)
0 0
Thus the left-hand side of the inequality is bounded by

B 1y
Lhs. < g1 - 2n j A(ds) U Is(2)|” dr} exp[ — Py(s) + A |s|3]
0
B 1y
<pr=ma| [agtds)| [ (o) de | expl ~Po) +A 10131 |
0

1—1/y
X [ j Ag(ds) exp[ —Py(s)+ A |S|§]

Here we have used the Hoélder inequality to obtain the second inequality.
Using the inequality xexp(—x)<cexp(—x/2) for x>0 and Assump-
tion 2.2.1(b), we conclude that

8
Lhs. < cf1 =2 f A(ds) exp [ —%D3 j Is(z)|? dr]
0

< Caﬂ(l - 2/)’)/2ﬂ —d(1/2+ 1/y)

Here we have used the method employed in the proof of part (b) of the
lemma to get the last inequality. |i

4.2. Basic Estimates: Classical Systems

We derive the basic estimates for the classical systems corresponding
to Lemma 4.1.1-Proposition 4.1.3. Put

zZP= f dx exp[ — BP(x)] (4.8)

We then have the following results:

Lemma 4.2.1. Let « be a fixed positive number. For 0 < f <« there
exist positive constants ¢,, ¢,, and ¢; independent of f>0 such that the
following results hold:
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(a) The bound
ZO>c, g
holds.
(b} For given 4 >0 the bound

[ dx expl — BP(x) + Apx*] < r =

holds.
(c) For given 4 >0 the bound

[ dx 182x] expl — BP(x) + APx*] < s p= 7t =20

holds.

Proof. The lemma follows from (4.8), Assumption 2.2.1(b), and
changes of variables. ||

Corollary 4.2.2. For given 4 >0 there exist positive constants ¢}
and ¢}, independent of § (0 < f <a) such that the bounds

(Z )" | dx expl —BP(x) + Apx?]1 < ¢}
and
(Z) 7" [ dx B'x| expl — BP(x) + APx*] < ¢, f1 272

hold.
Proof. The corollary follows from Lemma 4.2.1. |
Denote by %%®(Q) the space of Gibbs measures for classical

systems,'” where Q = (R¥)%". For given 4€ %, 4 >0, and v,e 97°(Q), put

dos 4, ) =exp[ 4 T wli=j) x5 | ylao)

{i,j}iied, jede
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and let pg(x,; 4, 4) be the distribution of v4(dw; 4, 4) on (Q,, %,) with
respect to dx,. We also write that for dc A4e¥

POxa A, A)=Z 7} [ dx g,

xeXP[—ﬂV(xAHA S i) xl- x|

{i,j}iied, jeA\d
where Z , , is the partition function, i.e., the normalization factor for 4 =0.

Proposition 4.2.3. Under the assumption as in Lemma 4.2.1 one
has the following results:

(a) For any 4e%, 420, and vye ¥#®(Q), there exist constants 4*
and ¢ independent of f such that the bound
po(x4; A, A) < [ BY exp(—A*f |x;]” + 3)
ied
holds.

_(b) For any dcA4€% and A>0, there exist constants 4>0 and
d >0 independent of § such that the bound

P0p(x5 4, 4) < TT B exp(— B |x,1" +5)
ied
holds.

The proof of the above proposition will be given in the Appendix.

5. CONVERGENCE OF THE CLUSTER EXPANSION:
ZERO BOUNDARY CONDITIONS

We first need the following result:

Proposition 5.1. Let & be a fixed positive number. For 0 <f <@
there exists a constant ¢ >0 independent of # and X = A e ¥ such that the
bound

g4(X) <exp(c |X])
holds, where |X| = card(X).
Proof. From (3.19) it follows that

gAX)= (Z;;O))m ZA\x,p/ZA,ﬂ
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and

(Z(po))lxl ZA\Kﬂ=Jlﬁ(dsA) exp [ — Vp(SA)"' Z

{ijyea:
{ijimnX%g

Uﬂ(sf—sj)]

Notice that by Condition 2.2.1(c) there exists 4 >0 independent of § such
that

Z U/}(Si_sj) = Z U/i(si"'sj) + Wﬂ(SXa SA\X)
{ijysa: {ij}eX
{Litnx2a

<4 Isilz+ Y

ieX

P(li—JjD) lsilp |Sj|/3

ie ,\;,l}'le} Ax

Thus we use (4.5) and Proposition 4.1.3(b) to conclude that

8 R
2,(X) S{ﬂd(l/2+l/Y)_’.lg(ds) exp[ _AJ s;(T)] dr + A |s,|;",+5]
1)

Now the proposition follows from the method used in the proof of
Lemma 4.1.1(b) and the above inequality. |

Let £> 0 be the constant in Assumption 2.2.1(c). For given ¢> 0 and
4€ %, put

Agdy= 3y

B~ Xe€:
AN X+
X\a#Q

[ s (4, X 540

xexp{c |4 U X| + Lelog[d(4, X)1} (5.1

where d(4, X) = sup{dist(4, i):ie X}. The main result in this section is the
following:

Theorem 5.2. There exists f,> 0 such that for any 0 < < f, and
4 €% the series A4(4) in (5.1) converges and the bound

Ag(d)<e”A(B)
holds, where a and A(f) are constants such that A(f)—0 as f— oo.

We postpone the proof of the above theorem until later. As a conse-
quence of the theorem we have the following result:
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Theorem 5.3. There exists f,>0 such that for 0 <f<f, and
feB(QF, #,) the bound

VRN < I fll o e 14'(B)
holds uniformly in A, where A'(f)— 1 as f— 0.

Proof. Recall the cluster expansion in (3.20). By Proposition 5.1,
Assumption 2.2.1(¢), and Corollary 4.1.2 (in that order) we have

Y K4, X f)| g4 X)

JgexX:Xcd

<ecM(Z ()14 I/lp(dsa) |f(5.4)| exp[ — V(s,4)]

141
<N Sl oo e {(Z(O) J.'lﬁ(dsd ) exp[ — Py(s) + 4 |S|p]}

<N Sl e

On the other hand, from (5.1), Proposition 5.1, and Theorem 5.2 it follows
that

Y KfA, XD g40X) < fll o Agl4)
FEXCA:
AnX#F
X\d#=&

<[1f 1l e 1A(B) (52)

The theorem follows from the cluster expansion (3.20) and the above
bounds. ||

In the rest of this section we prove Theorem 5.2. Recall the definition
of Ry(d,X;s,,%) in (3.15). We write X=YU W with ¥Y=4nX and
W= X\A4. For 4, Y, We % such that Yc 4 and W< Z*\4, put

145 Y, W)= [ 2ds ) 25(dsw) |Ry(4, YO Wis,00)

= [ 2ds 1) Aglds) exp[—V,,(s,,)— Y P,,(s,.)]

jew

x Y TT 1hg(ss)] (5.3)

{bl.nbp} cB(YUW): j=1
Ubj=Yu W,bj¢ B(Y),
{&1....bp} v {4} connected
The right-hand side of (5.3) can be viewed as the sum over graphs {b,,..., b,}
which are 4-connected (ie., {5, ..., b,} U {4} is connected). We reduce the sum
over 4d-connected graphs to that of 4-connected tree graphs as follows:
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Proposition 5.4. For given 4, Y, W={i,,.., i,,} €¥, the bound
14(4; Y, {i1sees im})

< _[ Aglds 4, w) exp [ —Vils4)— Z Pp(sj)]

jeW

xexp[ Y IU/,(S,-—S,-)|] ﬁ [ ) 'Uﬂ(sik_sj)l]

k=1LjeYouli,ix-1}

holds.

Proof. For fixed 4, Y, W={i,,..,i,} with Yo 4 and WcZ"\4, let
{by,.d,} cB(YUW)with Ub,=YU W, b;¢ B(Y), and {b,,..,b,} U {4}
connected be given. Notice that there exists at least one i;e W such that if
one removes all the bonds adjacent to i, (ie, all b={i;,j} €{b,,...b,})
from {b,,..,b,}, what remains is still a d-connected family of bonds. By
relabeling the elements of W one may assume i,=1i,. Thus there exists
W' < YU {ij,sin_1} such that

sl =| T hatsiesil || TTihatsy 1] (54
Jj=1 i=1

{im.i}:ie W’

where {b;,,..,b;} = {by....b,} is 4-connected. We substitute (5.4) into (5.3)

and perform the summation over W'=Y u {i|,..,i,,_,}. By a recoupling
identity (3.9) we have

Z l—[ Ihﬂ(si,,,s s

BAEW S YO it rimat) {imi}iic W

Sexp[ Y |Uﬂ(s,~m—sj)|] -1 (5.5)
je YU {ilwim—1}

This implies that for given & # Y< 4 and & # W= {i,,..,i,} ©Z"\4 the
bound

n
Z H ih/z(sb,-”
{blynbn} =Y U WY j=1
Ubj=Y U W, b;¢ B(Y),
{b1....5n) U {4} connected

S{exp[ Y IU,,(sim—s,)l] —1}

Fe€Y U {ilsim=1}

P
x > H |2 g(s5,)1 (5.6)
{610 bp} = BY O {i1esim—1}): i=1
Ubj=Y Ui ,im=1}.bj¢ B(Y),
{ &1 bp} connected
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Iterating the above inequality m times and using the fact that e*—1<
|x| ™! for any x e R, the proposition follows from (5.3) and (5.6). |

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Notice that if f(i,,..., i,,) is a symmetric func-
tion on Z', then

© 1 ,
Z f(X) = Z ;" Z f(il’""im)
FEXZ m= * :

where Y’ denotes the sum over i,,.., {,,€ Z"* with the restriction that i, # i,
if k#1 k, I=1,..,m. For given 4, X with AnX# @& and X\4 # &, we
write

X=YuW, Y=XnAJd, W=X\4
Y={jis g} W={iusin}
From (5.1), (3.19a), and (5.3) it follows that

4=

Add)= —_ ! 7 (0)y =14 +m)
ﬂ()qz ,q!m!Az (1])

=1 m=

X exp {c(lAI +m)+%log [d(4, W)]}

XIﬂ(A, {jl"--’jq}’ {ilr--aim}) (57)
where d(4, W) =sup{dist(4, j) : j€ {i}rip}}-

Next we estimate I(4; Y, W) by using Proposition 5.4. From Assump-
tion 2.2.1(c) it follows that there exists 4 >0 such that

Y Uslsi=spl<d Y Isilj (5.8)
{i.j} e2(X) ieX

Write that for ¢ # Y= 4 and meN

T4 Y,m)= 3 exp{glog[a?(d, W)]}I,,(A; Y, {i1yrim})  (59)

where W= {i,,...,i,,}. Using Proposition 5.4, the bound (5.8), and Assump-
tion 2.2.1(c), we obtain that for Z# Y4 and & # W= {i},....i,,}
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Ip(A; K {ll EASle] im})

<J Ag(ds ) exp [ —Visa)+A4 ), |sj|f,]

jevy

[ ldsy)exp| = 3 (Pis) =4 151D

ieW

<1{ T =Dl (510
k=1 eYu{i, -1}

If one expands []y_,{---}, the right-hand side of (5.10) has
(1Y} +m—1)l/| Y]! terms. One may recognize that each term can be labeled
by a tree graph T=T,u --- UT, on the vertex set Yu {ij,..i,} with
some / (1 /< |Y]) connected components T, k= 1,..., . Notice that some
of the T; can be a singleton. Each connected component T, has a root in Y.
For each bond {i,} € T, we assign the factor ¥(}i —jl) |s;|; |s;]. In order
to control the distance factor d(4, W) in (5.9), we note that for any x> 1,
y=21, x+ y<2xy and so by an induction the bound

log< y x,->< Y. (log x;+log2)

=1

i=1

holds for any x;>1, i=1,..., n. By the above bound we conclude that

log[(d(4, W)]< Y [log(li—j|)+log2] (5.11)

{i,j}eT

for any tree graph 7=7,u --- uT,. Next we substitute (5.10} into
(59) and use (5.11). Then instead of Y(|i—j|) we have the factor
(2 |i—j1)** ¥(li—j|) for each bond {i,j} €T, which is summable by
Assumption 2.2.1(c). Put

D=2 Y |i|* ¥(li])
ieZ

We then perform the summations over i,,e4°,..,i,,e4° and then resum
over tree graphs to conclude that

I4(4; Y,m)sjl,,(dsd)exp[ —Vyls)+4 ), Isj|f,]

jevyY

<[ 11 Andsyexp| = § (Pytsn)—Alsel3)]
k=1

k=1

x [] ( Y D sl Isjlg> (5.12)

k=1 VeYu{l..k—1}
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Notice that the s, are now just integral variables. Note that for any 4 >0

(T Dhslsh)

k=1 NjeYou{lk—1}

<<l] D |sk|,,)(j S k)

eYu{l,..m}

<m! 5’"<H |sk|,,> exp (A Y |sj|f,> (5.13)
1 m}

k= jeyYu{l,..,

for some constant D independent of m and . Thus from (5.12) and (5.13)
we obtain the bound

Tﬂ(d; Y, m)Sm' EmJ‘Aﬁ(dSA) exp [ — Vﬂ(SA)-I-ZA Z |SJ|;:|
jeyY

x {j A4(ds) |s| ; exp[ — P (s) + 24 |s|f,]} (5.14)

From (5.11), (5.8), (5.14), and Corollary 4.1.2 it follows that
4]

A <{ T S (Z9) e [ s,

g=1

xexp[—Vp(SA)+2A 2 |SI|§]} i (Eﬂ(l—Z/y)/z),,,
m=1

jeY:|¥YI=¢q

<AB) ¥ (Z) M e [ 2ds,)

Yod

xexp[—V,,(sd)+2A Y |sj|,2,]

jeyY

= AB(Z )™ e [ 2(ds,)

x {H' [1+exp(24 |s,-|§>]} expl — Vy(s.4)]

ied

<eMA(p) (5.15)

where 4(8) — 0 as f — 0. This completes the proof of Theorem 5.2. |
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6. UNIQUENESS AND CLUSTER PROPERTIES OF
GIBBS STATES

6.1. Convergence of Cluster Expansion for
General Gibbs Measures

We recall the cluster expansion (3.31) for general Gibbs measures. We
state our results:

Proposition 6.1.1. Under Assumption 2.2.1 there exists f,>0
such that for any 0 < f < 8, the following results hold:

(a) There exists a constant ¢> 0 such that
&(X) <exp(c|X])

(b) ForanyfeB(2* %,),0<p< By, R, 4f)is absolutely summable
and

IRudN < 1o e exp { = Slogldis(4, 41| A(f)

for some constant ¢ > 0.

Corollary 6.1.2. For any fe B(2’, #,), 0<p < f,, and v, 4°(2*)
one has

velf) = % Ky(4, X, /) g(40 X)

XeC:dn X+ D (X# D)
The above expansion is absolutely summable.

Proof. The above result follows from (3.31), Proposition 6.1.1, and
Proposition 5.2. ||

Proof of Proposition 6.1.1. (a) Recall the definition of ¢ in (3.26).
Since there exists a constant 4 > 0 such that

Z Uﬁ(si_sj)+ Wp(s,\'a S xe)
{ij) =)

ST Y s+ ) P(i—Jj1) Isilg 151

ieX {i.j}:ieX jeX*
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it follows from (3.26) and Proposition 4.1.3(a) that

B
#0 < T p12+ e [ (ds) exp [ —ar [ s ()7 de o+ |s,-|,2,]
0

ieX

< d(1/2 +1/3) ,D = ? y
<[l 5 e j/l,;(ds,.) exp| —4 L Is, ()] de
ieX

<eC|Xl

Here we have used the method in the proof of Lemma 4.1.1(b) to get the
last inequality.

(b) From (3.29) and Assumption 2.2.1(c) it follows that there exists
a constant J> 0 such that

UP<2) 3 Islz+2 X PUi—iDsilglslg
iedu X ieduX
jeldux)©

Now instead of 4 and A in Proposition 4.1.3(a) we take 4u X and 4 U X,
respectively. Using Proposition 4.1.3(a), we obtain that

IRA./x| < Z fllp(dsdux) { Z H Ihﬂ(sb,)l}

Xe€: (Bl enby} = B(XY:  i=1
AN X# P({b)....bn}:4,X) holds
X+ bi# B(A°)
d(1/2 + 17y s 3 2
x3 [ B2+ exp —A*J s:(T)|" dr +2J |s;| 5+ 0
ieduX 0

By using the method in the proof of Lemma A.1.1(b)—(c), one obtains that
for any A* >0, J>0 there exist ¢| and ¢, independent of 8 such that

B
fxﬁ(ds) exp [ —A* j Is,(T))7 de+J |s,|§} <\ fdansun
0
B
J 1) bty exp [ —a* [* s de 7k < cp g
0

One may follow the proof of Theorem 5.2 step by step to conclude that the
bound in part (b) of the proposition holds. [
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6.2. Kirkwood-Saisburg Type Integral Equations
and Uniqueness

We first derive Kirkwood-Salsburg type integral equations*® and
then prove the uniqueness of Gibbs states by using the equations. Let f be
a function defined on %. Such functions form a Banach space ,:

Fe={/: Ifl=sup &M |fX)| <0}, £>0 (6.1)

Xe¥€
We propose to derive an equation of the form®
g4=1+K,8,
g=0+Kg

where I{Z)=1 and I(X)=0 if |X]#0. Furthermore, we will show that
1K <1, [K]l <1, and hence

ga=(1-K,)™"
g=(1-K)"'1

are well defined and for any X € ¢ the limit

lim g,(X)=g(X)
A=Z

exists. In (3.15), we chose 4 = {7,} for a fixed i; e A. For Xe ¥ with i, € X,
put

Ry{in}, 0= [ 25(ds ) Ry({01}, X:50) (62)
Following the procedure in Section 3.1, it can be checked that
Z nx—1ans=Z5'Zaxpt ) R{it}, 9) Zpnxosis
@#fecsxl\(zl\’ {i})
(6.3)
As in Section 3.1, let
Ky({i}, §)=Ry({i}, SHZ YS! (6:4)
For any B, we define an operator K, on &, by
(Kg/)NDB)=0
(6.5)
(Kp X)) =fIX—{ir})— > Ry({i\}, $)f(XuS)

Q#SCZ‘\(X (n})
i1e S, |S|
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We introduce the operator y, on §, defined by

(XS NX) = 3 4(X) [(X) (6.6)

where y (X)=1 if Xc A and y 4(X) =0 otherwise.
Lemma 6.2.1. Let g, be given by (3.19d). Then the relation

ga=1 +XAK,BXA 84
holds for any A€ %.
Proof. The lemma follows from (6.3) and (6.4). |

Proposition 6.2.2. There exists f,> 0 such that for any 0 < f < §,
the following results hold:

(a) For £=e° the bound
lxaKpxall <1

holds uniformly in 4 € %, where c is the constant appearing in Theorem 5.1.
(b) The limit

gX)= lim g,(X)
A=Z

exists for any X € ¢. Furthermore, the function g on € belongs to % and
the equation

g=01+K,g

holds.
(¢) For any feB(Q2¥, #,) the infinite-volume limit

Vi) = lim v, ()
exists. Furthermore, the equation

va(f) = )y Ky(4, X, f) g(4 v X)

Xe€:dn X+ 2 (X+ )

holds for any f e B(RQ*, #,).
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Proof., (a) From (6.5), (6.6), and Theorem 5.2 it follows that

IxaKpxall Sf‘(l + sup Y 1Ki{i}, ) ec|5|>

neZ" ihes, |Si=2

Se [1+eA()]

where 4(f) — 0 as f— 0. Part (a) follows from the above bounds.

(b) As in the proof of (a), we can show that ||K,| <1. Hence the
equation

is well defined for a unique g. Using the standard argument in ref. 30, we
can show that for any Xe %, g,(X)— g(X) as 41— 0. For the details we
refer to ref. 30.

{c) This follows from (3.20), Theorem 5.2, and part (b) of the
proposition. |

Now we are ready to prove the uniqueness of Gibbs states,
Theorem 2.2.2. By the definition of Gibbs states we only need to show the
uniqueness of Gibbs measures.

Proof of Theorem 2.2.2. Recall the definition of g(X) in (3.26). By
the equilibrium condition [see also (3.27)], we can write that for any
Xe¥(X<A)

B0 = [ v(d) Z4 ()7 [ Aglds)

x exp[ —Pﬂ(SX) - Vﬂ(SA\x) s Wp(sA\X, .STAr)]

Adapting the method used in Section 3.2 [see also (6.3)], one obtains the
following expansion:

gX—{i})=8X)+ ) Ky{i,}, S)g(XUS)
FeScANX—{i}):
hes, S22
+ R, 4X) (6.7)

for any i, e X, where R, 4(X) is the contribution from S with i, €S and
S A # & The precise expression can be obtained from the expression of
R, 4(f) in (3.32) by replacing 4 and X by {i,} and S, respectively, and by
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setting /=1 in (3.32). By the same reason as that in the proof of Proposi-
tion 6.1.1(b), it can be checked that

lim R, (X)=0 (6.8)

A—-Z"

for any Xe€¥, and so from (6.7), (6.8), and (6.5) one concludes that the
function g on ¥ satisfies the integral equation

Since [|K4z|;<1 for any 0 <f<f, (by Lemma 6.2.1 and its proof), the
above equation has a unique solution in §.. By Proposition 622 we
conclude that

g=8
Thus Corollary 6.1.2 and Proposition 6.2.2(c) imply that

0) _
Vﬂ =V

for any v, € ¥®(QF). This completes the proof of the theorem. [

6.3. Cluster Properties: Proof of Theorem 2.2.3

We have developed the cluster expansion for Gibbs measure v},o’ and
the convergence of the cluster expansion for 0 <f<f,. Let v, be the
unique Gibbs measure. We then have the following cluster properties: for
any f, € B(@*, #,,) and f, € B(Q”, 7,,)

Ve f1f2) = va( 1) ve(f2)| = 0 as dist(4,,4,)— 0 (6.9)

Since there are well-known methods!'®"3% to derive the cluster properties
from the convergence of the cluster expansion, we will not produce the
proof of (6.9) and refer the reader to the refs. 6, 7, and 30.

Next we consider the cluster properties of the unique Gibbs state
peg (W) for 0<f<pPy. For 4e¥, let TY be the class of Hilbert—
Schmidt operators in A,. Since T? is g-weakly dense in A, by the
von Neumann density theorem, it suffices to show the cluster property for
4,€TY) and 4,eTG). For given Ae TP, let h(x,,y,) be the integral
kernel of 4. Define

Kp(A, X, A)= (Z;’o))—mu,\q ded '[ Ay shaxs,¥4)

x [P, ,,(d5,) [ 45 n,) R4, X 8y50,) (610)

822/80/1-2-17
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One may compare the above expression to Kjy(4, X;/f) in (3.16) and
(3.19). By the method in Section 3.1 one may derive the following cluster
expansion:

plog(A)= > K4, X;4) g4 440 X) (6.11)
deXca:
AAX %G (X4 D)
X\4 %3 (X4 D)
for any 4 €T We write that for §e W, ,, 3| =[§ |3(c)|* dr. We remark

that for any ¢>0

[T [ P2,.,.(ds) expl — Py(3) + 16,131

ied

1
<c(d, B) [T exp (—ﬁ |x,-—y,-|2>

ied

and so a direct application of the method used in Section 5 proves the
convergence of the expansion (6.11) for 4eT'Y. The cluster properties
follow from the convergence of the cluster expansion. |J

7. UNIQUENESS OF GIBBS STATES FOR ONE-DIMENSIONAL
SYSTEMS

We consider quantum unbounded spin systems in Z. In ref 22 the
systems are studied extensively and under an appropriate assumption on
the pair potential it is proved that for any value >0 there exists an
infinite-volume limiting Gibbs state which is translationally invariant and
ergodic. Furthermore, it is analytic in terms of the self-interaction and two-
body interaction potentials. The main tool used in ref. 22 is a polymer-type
cluster expansion which differs from that in Section 4. Thus we do not
know yet whether the state constructed in ref. 22 is a unique Gibbs state in
the sense of Definition 2.1.2 (and Definition 2.1.4). In this section we prove
that any one-dimensional system has a unique translationally invariant
Gibbs state. That is, we produce the proof of Theorem 2.2.4. The main tool
is a perturbation argument across the boundary 3V of 4 € %.\>!52

Consider one-dimensional systems and denote by £®(Q#) the family of
translationally invariant Gibbs measures on (2%, #). By using the method
in refs. 19 and 26 one may show that the measure constructed in ref. 22 is
a Gibbs measure, and so £®(2”) is not empty. A straightforward applica-
tion of the method in the proof of Theorem 2.7 in ref 26 shows that
&®(Q2*%) is compact in the local convergence topology and a Choquet
simplex.
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For given A € Z, let W (s 4, 5 4) be the interaction across the boundary
of A defined in (2.12):

WS4, S4c) = ¥ Uy(si—s;)
{i.j}iied jeA®

From now on we suppress f in the notations if there is no confusion
involved. For A € ¥, define a function W, , on Q by

WA.A‘(SAvsA‘)= Z Z W(li—j]) |Si|‘|sj| (7.1)
ied jed®
We then have the following result:

Lemma 7.1. Let A=[—n,n] be an interval in Z, and let the
condition in Theorem 2.2.4 be satisfied. Then exp[ W, 4] is an element of
LY(Q,dv) for any ve £%(Q), and {exp[ W, ,] dv is bounded uniformly
in A.

Proof. For given A =[ —n, n], we write that

W= Y Wildsi 54

lil<sn

Wf‘.’;)f(siasm): Z W(li_jl)lsil'h‘jl

jzn+1

and write W) analogously. For 4 =[—n, n], put
pi=D[¥(In—i|]17'2

D=} [¥In—i])]"?

lilsn

Thus p;>1, ie A, and 3, <, p; ' =1. By the Holder’s inequality
. - 1/2 N 172
fexp [Wyisldv< <j exp[2W % ] dv> (J exp[2W {1 dv>
= f exp[2W ] dv

and

1/pi
Jexp[2W‘,fl,c] av< [] <f exp[2p, W) 4] dv) (7.2)

lil<n
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Notice that

ZPIW({I;}),A‘(SAa s4)<2D Z [2Ui—j11" 1sil - |51

Jjzn+1

Park and Yoo

Thus by Proposition 4.1.3(a), the right-hand side of (7.2) is bounded

uniformly in 4. This proves the lemma. ||
For A=[—n,n] and meN, let

W s 108 4) = Y U(s;—s;)
{i.j):
ie A, d(A, &i} ysm
jeACd(A%, { 1) < m

Then for any s &
im exp[ W (s 4, 54)] = exp[ W(s 4, $.4)]

and
exp[ W(s 4, 54)]1 < exp[ WA.A‘(SA’ $4)]

For A=[—n,n], meN, and A€ %, (4 < 4), we write

B (A; m)= j w(ds) 1 ,(s) exp[ W™ (s ,, 5.4)]

D (m) = [ v(ds) expl W™ (s 1, 5.6)]

and
vi7(A) = B 4(A; m)/D ,(m)

We also write

B(4)= [ W(ds) 14(s) expl W(s.s, 5.1)]

D,,= [ v(ds) exp[ W(s 5, 5.)]

and

v4(A)=B (A)/D,

(7.3)

(74)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

Lemma 7.2. For given A=[—n,n], dcd, and Ae%,, the
sequence {B,(4;m)}, .n (resp. {D (m)}, .n) converges to B,(A) (resp.

D ,) uniformly in 4.
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Proof. Using the fundamental theorem of calculus and Assump-
tion 2.2.1(¢c), one obtains

1B A(4; 1) — BA(A)| < | A(ds)| W54, 5.4) — W5 4, 5,0
xexp[ WA.A’(SA’SA‘)] (7.10)
where W, , has been defined in (7.1). We note that

| W (s 4, 8.4c) — W(m)(sm §4l < Z W(“_jl) Isil : |sj|

{ij}:
ied, jeA":
d(Aiy>mord(A, jy>m

By Lemma 7.1
'[ v(ds) exp[ WA,A‘(SAv Sp)]<e

uniformly in 4. Now the lemma for {B,(4;m)} follows from (7.10), the
dominated convergence theorem, and the above bounds. The proof for
{D 4(m)} follows from the same argument. [

We are now ready to show Theorem 2.2.4.

Proof of Theorem 2.2.4. Let ve &%(R) be a fixed extremal element
in £9(2). By Assumption 2.2.1(c)

| W(s 4, s 4)| < WA,A"(SA: 8 4¢)

and so by Lemma 7.1, exp[ W(s ,, 5 4)] is an element of L(Q, dv) for any
A=[—n,n]. By (7.9) and the equilibrium conditions one may check that

v, =v®  on (Q,%) (7.11)

where v’ is the local Gibbs state with zero boundary conditions. Let v!¥
be the infinite-volume limit of v{).*® Then from (7.11) and Lemma 7.2 it
follows that for any 4 e &, 4€ ¥,

V9= lim v, (A4)
n-—+ o

= lim [ lim v§(4)]

n— 0 m— o

= lim [ lim v{(4)] (7.12)

nt— oo n— oo
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where A, =[ —n, n]. We assert that for given me N and 4 € &,

lim v (4)=w(4) (7.13)

n— o

We then conclude from (7.12) and (7.13) that

VO =y

Since £¥(R2) is a simplex, this proves the theorem.
We prove the assertion (7.13). Put

F(s 4,8 4) = exp[ W (s 4, 5,4)1/D 4(m)
Then F'™ e L*(Q, v) and

V(A) = [ W(ds) 1ls) F§s.4, 5.)

By using (7.5), the method in the proof Lemma 7.1, and Jensen’s inequality
one can show that {||F{’|,} is bounded uniformly in A4, (and inm).
Thus there exists a subsequence {F’} which converges weakly to an
L*function, say F". Thus one has

lim v;':j>(A)=fdv 1,Fom

nj

It is easy to check that FU") is a J_ -measurable function, where J, is the
algebra of tail events.!' Since v is trivial on . _, by the extremality of v,"'?)
and v(F7")=1, we conclude that

lim v%"(A4)=v(A4)

nj— ¥
We note that {n7”’(4)} is bounded uniformly in A. Since the above
argument can be applied to any convergent subsequence of {nj(4)}, the
assertion is proved. ||

APPENDIX. PROOFS OF PROPOSITIONS 4.1.3 AND 4.2.3

In this appendix we produce the proofs of explicitly pf-dependent
probability estimates in Propositions 4.1.3 and 4.2.3. We shall modify the
probability estimates in refs. 26 and 32 in such a way that one extracts f
dependences explicitly. The modifications are a f-dependent decomposition
of the configuration space 2 and a f-independent A substitution in refs. 26
and 32.
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As in ref. 32, for given a >0 we can choose an integer P, >0 and for
each n> P, an integer /, >0 such that |/, ,,//,— (1 +2a)| <0. Put

[n]l={ieZ":i|<l,}

Al
Vi=(2,+1) (A1

The following is Proposition 2.1 of ref. 32.

Lemma A.1. Let¢>0and ¢ >0 be given, and let ¥ be the function
on the natural integers given in Assumption 2.1.1(d) [also in Assumption
2.2.1(c)]. If « is sufficiently small, one can choose an increasing sequence
{¥,} such that y, > 1, ¢, — o0, and fix P> P, so that the following is true:

Let n(-) be a function from Z" to the positive real numbers. Suppose
that there exists ¢ such that ¢ > P and ¢ is the largest integer for which

L niy?=y,V,

ie(q]

Then the bound

Yo+ Y Y Ui-jDieG)+n()I1<e Y n()?

ie[g+1] ielg+1] j¢lg+1] ielg+1]
holds.

Proof of Proposition 4.1.3. (a) Recall the notations in Egs.
(4.1)-(4.3). We first introduce a f-dependent decomposition of configura-
tion space:

1
Ro={se iz T p¥ |s.~|7,<¢,,V.,,Vq>P}
ielq]
1 1
R ={se.Q/’:— Y, B sil3<v¥,V,and -

q

Z ﬂz/y |Si|/2,r<'pr1,

ielq] ﬁie[/]

VI>q+1} (A2)

€R=‘Rou< U ‘.'R,,)

gz=P

From the definition of & in (2.3) one has @ cR. From the proof of
Lemma 4.1.1(a) it follows that there exists a constant ¢ independent of £
such that the bound

J Ag(ds) exp[ — Py(s)] = =412 +1m
=g~V
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holds. Thus there exists f-independent constant A> 0 such that the bound

1 < ARHN2+1 f A(ds) exp[ —P(s)] (A3)

Z(p-'m

holds.
Recall the definition of py(s,; 4, 4) in (4.3). We write that

Pasas A, A)=pi(ss; A, A) + ppss; A, 4)

where pj is the contribution from R, and pj; the contribution from
Ugsr R,. We first consider pj. It follows from (4.4) that for any 4 = 4

p’ﬂ(sd; A’ A)

= [ W) Z4.5(8) " [ g5 10) Vono( 5.4 000)

xexp[—Vp(SA)—Wﬁ(sAafA\d)"'A z W(Ii_jl)lsi|ﬂ|§j|ﬂ:|

ied, jed

(A4)

where §,=s; if je 4 and §;=3; if je A°. Note that
Z |si|2<ﬁl_2/y¢q v, on R,
ielq]
There exists a constant D' >0 independent of §, 0 < f<«, such that for

any ied and 5,5, €R,

X PUi—jh s |z< D’ (A5)

jed
See ref. 31 for the above bound. By Assumption 2.2.1 one has that for ke 4
- Vp(SA) - W,,(s,,, 5 4¢)
= _P,B(sk) - V/I(SA\(k)) - Wﬁ(sk’ SA\{k}) - W/J(Sm 54
< —Pylse)— V/r(sA\(k))_ Ws(sk, SA\{k,) - Wﬁ’(S;\'SA\(k) s S 4¢)

+J(IskI§+ISZ-I§)+Z 1k —j1) 1517 (A6)
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where J=3; ¥Y(|j]). Thus from (A.5), (A.6), and the fact that |xy|<
(x*+ y?)/2 it follows that for any ke 4, 5,5 ,.€ R,

—Vp(sA)_Wp(sAa§A€)+A Z P(ji—jl) |si|ﬂ|§j|,8
ied,jed"
S = V(s inquy) — WilSkes Saniiy) — WSS gy » Sa¢)
—Pp(sk)+-7(|sk|§+ |S;c|§;)
+4 Y PUi—jD) Isilg 1515+ D (A7)
ied\{k}.jeac

for some constants J>0 and D >0 independent of 5. Now we use (A.3),
(A4), and (A.7) to obtain that

py(84; A, D)
AP+ eP exp[ —Pylsi) + T Isil3]  sup y exp[J |5t ]
sie Z(B=1)
x[9(d5) Zag® ™ [ 25d50) [ Alds yiay)

Z(g~'n

xexp{—Vp(Sﬁ)—Wp(sﬁas_m)'f'A 5 yz(|,-_,-|)|s,.|,,|s~,|,,]
g
J

Notice that |s;|3< '~ on Z(B~'7). Thus from the above we conclude
that the bound

[
pissi d, )< p e exp | a* [ loorlde = |}
0

X P (S a\jiy s As AN\{k}) (A.8)

holds for any k e 4.
Next we consider pg. By the equilibrium conditions one may choose
A=A, such that 4c A4, and (g + 1] = 4, for each ¢g( = P), and such that

Pi(sas Ay A)= ¥ [ W) Z4y 537 [ Al 4ns) L5 5)

qz=P

X exp [ —Vp(s4,) — Wpls 4, EA;)
A T Wi= i) Isds 5 (A9)

ied
jeas
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As in ref 32, we have that for [g+1] <V,

_V/l(sA,,)_ Wﬂ(sAqafA;)
= = Valstg+11) = Vil spnta+11) = WielS 14135 Sarg+11)
- Wﬁ(s[‘i+|]sAq\[q+l]’§A;)
< = Valspg419) = VilS aprg+17)
= Walstyg+ 135 S apta+13) — Walstar 135 a0 pq+115 542
+ Y PUi—jDUs |3+ 1513

ie{g+11
jelg+1]°
+ X PUi-jDUsiE+151R)
ie[q+1]
jelg+1]1°

Notice that there exist constants 4 >0 and 4 >0 such that

_
ValStge11) 2 > (AJO |S,~(‘r)["dr—5>

ie(qg+1]
We now use Lemma A.l and the above bounds to conclude that for
s,,qs‘A;e‘Rq
—Vuls.4,) = W54, S0
Y
R I
ielg+1] 0

— V(S apntq+11) = Walsta 13 Supta 1)) = WilStg+ 13540004115 2

7Y Il (A.10)

jelg+1]
We add and subtract the factor ¢ ¥, ,, 387" "% |s;|; to (A.10), and
then use (4.7) and (A.2) to conclude that for any fixed a>0 and 0<fi<a
—Vals4,)— Wplsa, S-A;)
* £ g s "
<= % (4 [ lsor dr=8) -y Vi
iel[g+1] 0

=Vl anta 1) = Welstar 115 Saprg+12) = WalSta115 4000+ 125 Sa8)

T IS (A11)

jelg+1]
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Notice that the constant C” is independent of f. On the other hand, one
may use Lemma A.1 to obtain

AT li—j1) sl s,

ied
jed
<4 Y Yli=jiDlsdglslp+A X wli=jD) Isilgls;ls
ie[g+1 iEEq+1}
jelg+1] jelg+1

+4 Y Wli—jDlsilglslg

ied\[g+1]
jedac

< Agf~11 7 Z |Si|Z+AJ z Isilii

ie[g+1] ie{qg+1]

+4 Y wi—jD Isilglslg (A.12)

ied\[g+1]
jed*

Combining (A.11) and (A.12) and using (4.7) and the fact that
Is;15<p' =% on Z(B~'7), one concludes that

_Vp(sAq)—‘Wp(sA,sz;)'i'A Z 'l’(|i_j|)lsi|/1 |sj|p
ied
jedac

- A |s(r)|’dt—>
:e[q+1]< J.

- Vﬂ(sA.,\[q+ 11) = Wistg 4115 SA,,\[q+|]) - Wﬂ'(sll:q+l]SAq\[q+l]’ S_A;)
+4 Y Wli—=Jj) Isilglsilg= C"Y g1 Vi (A.13)

ied\[g+1]
st
for some constants 4, 8, and C" >0 independent of . We substitute (A.13)
into (A.9), and then use (A.3) and the method employed in ref. 32 to obtain

pZ(SA’Aid)
<( mopmentep[- 3 (A e a-3)]
ie[g+1]n4 :e[q+1]nd
x 3 exp(—C'VY o1 Vot ¥ D"V 1) pp(s npga1ps 4 A\[g+1])
q=P

As in ref. 32, part (a) of the proposition follows from (A.8), (A.14), and an
induction on card(4).
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(b) Throughout the proof of part (a) we fix A4 and set A, =4 for all
g = P and then take the configuration § , to be zero. Then the proof follows
from that of part (a). ||

Proof of Proposition 4.2.3. Replacing s, by x;, ie A, and using the
method employed in the proof of Proposition 4.1.3, the proposition follows
from the method used in the quantum case. We leave the details to the
reader. ||
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